

Metal-Catalyzed Anaerobic Disproportionation of Hydroxylamine. Role of Diazene and Nitroxyl Intermediates in the Formation of N₂, N₂O, NO⁺, and NH₃

Graciela E. Alluisetti,[†] Alejandra E. Almaraz,[†] Valentín T. Amorebieta,^{*,†} Fabio Doctorovich,[‡] and José A. Olabe*,[‡]

Contribution from the Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de Mar del Plata, Funes y R. Peña, Mar del Plata B7602AYL, Argentina, and Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina

Received June 3, 2004; E-mail: amorebie@mdp.edu.ar; olabe@qi.fcen.uba.ar

Abstract: The catalytic disproportionation of NH₂OH has been studied in anaerobic aqueous solution, pH 6-9.3, at 25.0 °C, with Na₃[Fe(CN)₅NH₃]·3H₂O as a precursor of the catalyst, [Fe^{II}(CN)₅H₂O]³⁻. The oxidation products are N₂, N₂O, and NO⁺ (bound in the nitroprusside ion, NP), and NH₃ is the reduction product. The yields of N₂/N₂O increase with pH and with the concentration of NH₂OH. Fast regime conditions involve a chain process initiated by the NH₂ radical, generated upon coordination of NH₂OH to [Fe^{II}(CN)₅H₂O]³⁻. NH₃ and nitroxyl, HNO, are formed in this fast process, and HNO leads to the production of N₂, N₂O, and NP. An intermediate absorbing at 440 nm is always observed, whose formation and decay depend on the medium conditions. It was identified by UV-vis, RR, and ¹⁵NMR spectroscopies as the diazene-bound $[Fe^{II}(CN)_5N_2H_2]^{3-}$ ion and is formed in a competitive process with the radical path, still under the fast regime. At high pH's or NH₂OH concentrations, an inhibited regime is reached, with slow production of only N₂ and NH₃. The stable red diazene-bridged [(NC)₅FeHN=NHFe(CN)₅]^{6−} ion is formed at an advanced degree of NH₂OH consumption.

Introduction

Hydroxylamine (NH₂OH) is important in the synthesis of caprolactam, a precursor of polyamide 6, and is also employed as a reducing agent for photographic processes and dyeing and in the production of oximes for use in paints, pharmaceuticals, and pesticides.¹ It is formed as an intermediate during the reversible bacterial interconversions of ammonia into nitrite and/ or nitrate in aerobic soils.2 Nitrosomonas europaea derives energy for growth from the oxidation of ammonia to nitrite. Two enzymes are involved: ammonia monooxygenase, a membrane-bound enzyme that catalyses the oxidation of ammonia in the reaction $NH_3 + O_2 + 2e^- + 2H^+ \rightarrow NH_2OH +$ H₂O, and hydroxylamine oxidoreductase (HAO), a soluble multiheme enzyme that catalyzes the reaction: $NH_2OH + H_2O$ \rightarrow NO₂⁻ + 4e⁻ + 5H⁺.^{3,4} NH₂OH can be reduced to NH₃ by some heme cd_1 -^{5a,b} and cytochrome *c*-containing nitrite reductases (NiR),^{5c,d} as well as by some sulfite reductases.^{5e,f} NH₂-OH is a natural product of mammalian cells and is produced through the decomposition of nitrosothiols.⁶ It is widely used

- (1) Buchner, W.; Schliebs, R.; Winter, O.; Buchel, K. H. Industrial Inorganic Chemistry; VCH Veriagsgeselischaft: 1989; pp 52-55.
- (2) Hughes, M. N. The Inorganic Chemistry of Biological Processes, 2nd ed; Wiley: New York, 1981.
- Hooper, A. B. In *Autotrophic Bacteria*; Schlegel, H. G., Bowien, B., Eds.; Science Tech Publishers: 1989. (3)

as an NO donor;⁷ thus, although it inhibits guanylate cyclase activity, a vasorelaxing activation is obtained in the presence of catalase-H₂O₂.⁶ Reactions with oxyhemoglobin and myoglobin are also considered biochemically significant.^{6,7}

In the reactions with transition metal complexes, NH₂OH behaves as a strong reductant, leading to diverse oxidized products or as an oxidizing agent producing ammonia, depending on the metal and spectator ligands, the pH, and the medium.⁸ Free radicals derived from one-electron reduction or oxidation of NH₂OH (NH₂ or NHOH, respectively) have been detected as intermediates in some of these reactions.⁸

Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. *Chem. Rev.* 2002, *102*, 1091–1134.
 Wieghardt, K. *Adv. Inorg. Bioinorg. Mech.* 1984, *3*, 213–274.

[†] Universidad Nacional de Mar del Plata.

[‡] Universidad de Buenos Aires.

^{(4) (}a) Hendrich, M. P.; Logan, M.; Andersson, K. K.; Arciero, D. M.; Lipscomb, J. D.; Hooper, A. B. J. Am. Chem. Soc. 1994, 116, 11961– 11968. (b) Hendrich, M. P.; Petasis, D.; Arciero, D. M.; Hooper, A. B. J. 11968. (b) Hendrich, M. P.; Petasis, D.; Arciero, D. M.; Hooper, A. B. J. Am. Chem. Soc. 2001, 123, 2997–3005. (c) Upadhyay, A. K.; Petasis, D. T.; Arciero, D. M.; Hooper, A. B.; Hendrich, M. P. J. Am. Chem. Soc. 2003, 125, 1738–1747. (d) Hendrich, M. P.; Upadhyay, A. K.; Riga, J.; Arciero, D. M.; Hooper, A. B. Biochemistry 2002, 41, 4603–4611. (e) Cabail, M. Z.; Pacheco, A. A. Inorg. Chem. 2003, 42, 270–272.
(5) (a) Allen, J. W. A.; Watmough, N. J.; Ferguson, S. J. Nat. Struct. Biol. 2000, 7, 885–888. (b) Singh, J. Biochim. Biophys. Acta 1973, 333, 28–36. (c) Stach, P.; Einsle, O.; Schumacher, W.; Kurun, E.; Kroneck, P. M. H. J. Inorg. Biochem. 2000, 79, 381–385. (d) Einsle, O.; Messerschmidt, A.; Huber, R.; Kroneck, P. M. H.; Neese, F. J. Am. Chem. Soc. 2002, 124.

H. J. Inforg. Inform. 2006, 7. Jonator Society, J. Linker, M. S. M. Society, J. M. Society, J. M. Society, and S. M. Society, and S. M. Society, and S. M. Society, and S. M. Society, D. Biochemistry 1997, 36, 12120-12137.

⁽⁶⁾ Feelisch, M.; Stamler, J. S., Eds. Methods in Nitric Oxide Research; Wiley: Chichester, 1996.

Slow disproportionation of NH₂OH in alkaline solutions gives NH₃ and N₂/N₂O mixtures.⁹ These processes are also apparent in the reactions of NH₂OH with iron porphyrins and bacteria.^{5f,10} It has been suggested that this reaction type only occurs in the presence of metal ion catalysts, involving coordination of NH2-OH to the metal.¹¹ In general, the redox properties of coordinated NH₂OH as compared to the free ligand have not been studied in great detail.8

We focus on the reactivity of NH₂OH bound to the [Fe^{II}(CN)₅]³⁻ fragment.¹² The pentacyano(L)ferrate(II) complexes are well characterized systems, and many L ligands form moderate to strong stable complexes ($K_{st} = ca. 10^3 - 10^5 M^{-1}$). In many cases, the pentacyano(L)ferrate(III) derivatives have been also characterized.¹³ The potential for the Fe(III),Fe(II) couple to catalyze ligand redox is intriguing. Reactive intermediates may be stabilized by the $[Fe^{II}(CN)_5]^{3-}$ fragment during these redox processes.¹⁴ The catalytic disproportionation of NH₂-OH using nitroprusside (NP) has been considered,^{15,16} but the mechanistic proposal admits a significant revision, as will be shown here. Our main goal is to investigate the mechanism of the catalytic disproportionation reaction(s) of NH₂OH in anaerobic medium, with an eye toward characterizing its coordination ability to the iron center. We address the conditions favoring the formation of N₂ vs N₂O and NO⁺/NO₂⁻.

Experimental Section

Reagents. Na₃[Fe(CN)₅NH₃]·3H₂O was synthesized and purified according to literature procedures.¹⁷ NH₂OH·HCl (Merck, 99%), ¹⁵NH₂-OH·HCl (Isotec, 99% of ¹⁵N atoms), (N₂H₅)₂SO₄, pyrazinamide, D₂O, 95% thiosuccinic acid, and 99% methyl methacrylate (Aldrich) were used as received. N₂ and Ar (AGA, UAP) were used for previous bubbling of the solutions. The buffer solutions were prepared using reagent grade Na₂B₄O₇·10H₂O (Merck, 99%), KH₂PO₄ (Merck, 99%), and NaOH (Anwill, 99%). Deionized distilled water was used in all the experiments.

Physical Measurements. UV-vis spectra were recorded in a UV 2101-PC Shimadzu instrument, in the range 300-900 nm. Complementary measurements in the near-infrared region (NIR), up to 1500 nm, were obtained with a Shimadzu 3101 PC instrument. Some kinetic runs were carried out with an Applied Photophysics RX 1000 stopped flow (SF) accessory, linked to a Hewlett-Packard 8453 diode array spectrophotometer. Qualitative and quantitative gas production were conducted using a thermostated homemade flow reactor (volume, 0.07 dm³) linked to a vacuum system and to an Extrel Emba II quadrupolar mass spectrometer through a thin thermostated capillary. The reactor

- (11) (a) Lunak, S.; Veprek-Siska, J. Collect. Czech. Chem. Commun. 1974, 39, 1-48. (b) Lunak, S.; Veprek-Siska, J. Collect. Czech. Chem. Commun **1974**, *39*, 391–395. (c) Bonner, F. T.; Akhtar, M. J. *Inorg. Chem.* **1981**, 20, 3155–3160.
- (12) Lunak, S.; Veprek-Siska, J. Collect. Czech. Chem. Commun. 1974, 39, 2719-2723.
- (13) (a) Macartney, D. H. Rev. Inorg. Chem. 1988, 6, 101-151. (b) Baraldo, L. M.; Forlano, P.; Parise, A. R.; Slep, L. D.; Olabe, J. A. Coord. Chem. Rev. 2001, 219-221, 881-921.
- (14) Olabe, J. A. Adv. Inorg. Chem. 2004, 55, 61-126.
- (15) Banyai, I.; Dozsa, L.; Beck, M. T.; Gyemant, G. J. Coord. Chem. 1996, 37.257 - 270.(16) Wolfe, S. K.; Andrade, C.; Swinehart, J. H. Inorg. Chem. 1974, 13, 2567-
- 2572 (17) Kenney, D. J.; Flynn, T. P.; Gallini, J. B. J. Inorg. Nucl. Chem. 1961, 20,
- 75-81.

was also supplied with an absolute pressure transducer, MKS Baratron 622 A, and with a mechanical stirrer. The pH was controlled with a Hanna HI9321 pHmeter, calibrated against Merck standard buffers. The NMR studies (15N) were performed in a Bruker 500 MHz instrument, using Ar-flushed solutions of Na₃[Fe(CN)₅NH₃]·3H₂O in D₂O (ca. 0.06 M, pH 9), after adding a great excess of ¹⁵NH₂OH. IR spectra were obtained using either a Thermo Mattson (model Genesis II) or a Nicolet 510P FTIR instrument. Resonance Raman spectra were measured with the 457.9-nm excitation line of an Ar⁺-laser (Coherent Innova 400) using an U1000, ISA spectrograph equipped with a liquid nitrogen cooled CCD camera. The spectral resolution was 4 cm^{-1} , and the step width (increment per data point) was 0.53 cm⁻¹. Accumulation times of the spectra were 15 s. The samples were placed in a rotating cell to avoid photodamage by the incident beam (power of ca. 30 mW). Phenol was determined with a Konic HPLC instrument model KNK-500-A containing a UV-vis detector.

Procedures and Identification of Reactants and Products. At pH's 6-8, the dissociation of NH₃ from the $[Fe(CN)_5NH_3]^{3-}$ ion $(\lambda_{max} =$ 396 nm, $\epsilon = 450 \text{ M}^{-1} \text{ cm}^{-1}$) yields quantitatively the [Fe(CN)₅H₂O]³⁻ ion in a few minutes ($\lambda_{max} = 444$ nm, $\epsilon = 660$ M⁻¹ cm⁻¹).¹⁸ This species decays slowly through a decomposition process leading to the [Fe(CN)₆]⁴⁻ and Fe²⁺ ions by way of successive release and recombination of cyanides ($t_{1/2}$ = ca. 2 h).¹⁹ Thus, it is sufficiently long-lived, relative to the time scale of the main reactions under study, to trap the free ligands present in the solutions. We checked spectroscopically on these dissociation-decomposition processes, to put them under control in our reaction conditions, including the absence of perturbations associated with oxygen leakage. Due to the possible catalytic role of the ferrous ions, we verified that the distribution of products in the experiments to be described below did not change by adding a great excess of EDTA as a potential scavenger.18,20

The experiments were carried out under oxygen-free conditions (bubbling with, and mixed under N2 or Ar), avoiding the formation of the $[Fe^{III}(CN)_5H_2O]^{2-}$ ion ($\lambda_{max} = 394$ nm, $\epsilon = 750$ M⁻¹ cm⁻¹),²¹ potentially produced by oxidation of [FeII(CN)5H2O]3-.18

The reactions were studied at 25.0 °C in buffer solution (0.1 or 1 M in phosphates for pH 6-8 or 0.1 M in Borax for pH 9.3). The detailed procedures were as follows. For the UV-vis kinetic experiments, Na₃[Fe(CN)₅NH₃]·3H₂O was dissolved in a volume of buffer solution (final concentration $(0.02-3.0) \times 10^{-3}$ M). A sample was put in the quartz cell (optical path 0.1 or 1 cm) and a desired amount of NH₂OH solution was added over the range $2 \times 10^{-5} - 10^{-1}$ M. Absorbance values at fixed wavelengths (440, 520 nm) were registered as a function of time. The kinetic runs in the SF regime were performed under pseudo-first-order conditions in NH₂OH ((2.0-5.0) \times 10⁻³ M, I = 1 M, NaCl; pH 7), by monitoring, at 440 nm, the decay of the absorbance of 1.0×10^{-4} M [Fe(CN)₅H₂O]³⁻. The measured values were fitted to $\ln(A_t - A_{\infty})$ against time. The pseudo-first-order rate constants (k_{obs} / s⁻¹) were plotted against [NH₂OH]₀, thus obtaining a second-order rate constant $(k_{\rm f}/{\rm M}^{-1} {\rm s}^{-1})$. For the measurement of the gaseous products, 0.025-0.040 dm3 of a buffered solution of NH2OH at the desired concentration (5 \times 10⁻⁴ – 2 \times 10⁻¹ M) and a measured amount of solid Na₃[Fe(CN)₅NH₃]·3H₂O (final concentration, $(1-3) \times 10^{-3}$ M) were placed separately inside the reactor. Both reactants were mixed after evacuation, and the time evolution of the gaseous stream was continuously monitored. The evolution of the total pressure of the system (p_{sys}) was obtained by numerical integration of the balance equation: $(dp_{sys}/dt) = (dp_{obs}/dt) + (k_e \times p_{obs}^2)$, with p_{obs} being the measured pressure and $k_e \approx 2 \times 10^{-5} \text{ Torr}^{-1} \text{ min}^{-1}$, the leak constant. The products of the reaction were N2 and N2O, and quantitative determinations required the calibration of the mass spectrometer

- Olabe, J. A.; Zerga, H. O. Inorg. Chem. 1983, 22, 4156–4158.
 Bridgart, G. J.; Waters, W. A.; Wilson, I. R. J. Chem. Soc., Dalton Trans. 1973, 1582–1584.
- (21) Espenson, J. H.; Wolenuk, S. G., Jr. Inorg. Chem. 1972, 11, 2034-2041.

^{(9) (}a) Nast, R.; Hieber, W.; Proeschel, E. Z. Anorg. Allg. Chem. 1948, 13,

 ⁽a) (a) (b) Nast, R.; Foppel, J. Z. Anor, Allg. Chem. **1950**, 263, 310.
 (10) (a) Choi, I. K.; Liu, Y.; Wei, Z.; Ryan, M. D. Inorg. Chem. **1997**, 36, 3113–3118. (b) Barley, M. H.; Takeuchi, K. J.; Meyer, T. J. J. Am. Chem. Shib Shib Shib Shib Bardy, M.H., Hakudali, R. S., Meyer, H.J. S. Am. Chem.
 Soc. 1986, 108, 5876–5885. (c) Bazylinski, D. A.; Arkowitz, R. A.;
 Hollocher, T. C. Arch. Biochem. Biophys. 1987, 259, 520–526. (d)
 Castignetti, D.; Hollocher, T. C. Appl. Environm. Microbiol. 1982, 44, 923–
 928. (e) Bagchi, S. N.; Kleiner, D. Biochim. Biophys. Acta 1990, 1041, 9-13.

⁽¹⁸⁾ Toma, H. E. Inorg. Chim. Acta 1975, 15, 205-211.

Figure 1. Time evolution of the total gaseous products (in moles) during the successive addition of 5×10^{-2} M NH₂OH ($R_0 = 20$) over 2.5 × 10⁻³ M $[Fe(CN)_5H_2O]^{3-}$ (0.025 dm³ of buffer solution), at pH 8, I = 2.6 M (phosphates), 25 °C.

sensibilities. The solubility of N2O in the buffer solutions was considered by measuring independently its Henry constant. From the values of the calculated p_{sys} and the solubility of N₂O, a corrected molar fraction and the concentration of the gaseous products in the condensed phase were established. We verified that the redox capacity in the exhausted solutions was nearly equal to the one corresponding to the initial [Fe^{II}(CN)₅NH₃]³⁻, by titration with iodine;²² in this way, the absence of oxidized [FeIII(CN)5L]ⁿ⁻ or reducing (NH2OH, N2H4) species was confirmed. Ammonia, NP, and the [(NC)₅FeN₂H₂Fe(CN)₅]⁶⁻ ion were identified and quantified in these solutions. Ammonia was extracted by distillation under N2 current; it was identified by mass spectrometry and quantified by acid/base titration. Alternatively, a spectral quantification was made directly on the residual solutions by means of its reaction product with a solution of phenol and hypochlorite ion containing NP as catalyst.23 NP was identified in the solid residue by IR spectroscopy²⁴ and quantified in the solutions through the reaction with thiosuccinic acid.²⁵ It was also indirectly confirmed in the reacting solutions by means of the reaction with 1,2-dimethylhydrazine,26 whose product led to a typical EPR signal of the [Fe(CN)₅NO]³⁻ radical.²⁷ The [(NC)₅FeN₂H₂Fe(CN)₅]⁶⁻ complex was identified in some of the exhausted solutions (pH 8-9.3, in assays performed with great excess of NH₂OH) by its absorption band at 520 nm, in agreement with a previous characterization based on gel-permeation experiments and RR measurements.28 We report now that a product with the same absorption features has been obtained in an independent two-step experiment: first, a solution of the [Fe(CN)₅N₂H₄]³⁻ ion²⁹ was titrated with 2 equiv of hexacyanoferrate(III), leading to a 440-nm absorbing product, [Fe-(CN)₅N₂H₂]³⁻ (see Results). This solution was mixed with an equivalent of $[Fe^{II}(CN)_5NH_3]^{3-}$, with the ensuing development of the 440-nm \rightarrow 520-nm conversion. Control experiments showed that the decomposition of NH₂OH was very slow in the absence of [Fe(CN)₅NH₃]³⁻, with an observed rate of formation of gaseous products lower than 10⁻⁶ M

(29) (a) Katz, N. E.; Olabe, J. A.; Aymonino, P. J. J. Inorg. Nucl. Chem. 1977, 39, 908-910. (b) Olabe, J. A.; Gentil, L. A. Transition Met. Chem. 1983, 8,65-69.

min⁻¹. This value is about 1 order of magnitude smaller than the slowest rate measured in the presence of complex.

Numerical simulations were performed by using a specific program, based on an adaptation of the "predictor-corrector" approach developed by Gear.30

Results

(i) Catalytic Behavior. When solutions of excess NH₂OH are mixed with [Fe^{II}(CN)₅NH₃]³⁻, the evolution of N₂ and N₂O is rapidly observed, with formation of NH₃ in the residual solutions. Clearly, a disproportionation process is underway. For a constant concentration of complex, the catalytic behavior can be visualized by making successive additions of NH₂OH to the exhausted reaction mixtures. The parameter $R_0 = \{ [NH_2OH]_0 / \}$ $[Fe(CN)_5NH_3^{3-}]_0\}$, where $[NH_2OH]_0$ and $[Fe(CN)_5NH_3^{3-}]_0$ are the initial concentrations, will be used further on. Figure 1 shows the time evolution of the number of moles of total gaseous products for $R_0 = 20$ and pH 8. After an induction period of a few minutes, a plateau region is attained in approximately 25 min, with total consumption of initial NH2OH. If the same amount of NH2OH is added again to the mixture, a fast response (i.e., without the induction period described above) is obtained, and the gas evolution proceeds with a similar rate profile as in the first cycle. The system evolves in the same catalytic way if previously oxidized $[Fe^{III}(CN)_5L]^{n-}$ (L = NH₃, H₂O) is added as a starter, instead of Fe(II). On the other hand, the catalytic process is not observed if [Fe(CN)₆]⁴⁻ is initially used, or through the addition of L ligands forming very stable [Fe^{II}(CN)₅L]ⁿ⁻ complexes, such as cyanide, pyrazinamide, and the like.¹³ To confirm that the [Fe(CN)₅]³⁻ fragment remains intact along the reaction, we carried out experiments with ¹⁵NH₂-OH, which showed unequivocally only ¹⁵N-containing products.

(ii) Stoichiometry. The balances of nitrogen were performed at iron concentrations of ca. 10^{-3} M. The transformed NH₂OH corresponds to: $n_{NH_2OH}^0 \approx [(4 \times n_{N_2O} + 3 \times n_{N_2})]$ (see Table 1), where $n_{\rm NH_2OH}^0$ is the number of initial moles of NH₂OH and n_{N_2O} , n_{N_2} are the moles of products at the end of the reaction. We estimate the errors in the nitrogen balances around 20%

⁽²²⁾ Siggia, S.; Hanna, J. G. Quantitative Organic Analysis via Functional Groups, 4th ed.; Wiley-Interscience: 1979. (23) Koroleff, F. In *Methods of Seawater Analysis*; Grasshoftt, K., Ed.; Verlag

Chemie: New York, 1976; pp 126-133.

⁽²⁴⁾ Paliani, G.; Poletti, A.; Santucci, A. J. Mol. Struct. 1971, 8, 63-74. (25) Szacilowski, K.; Stochel, G.; Stasicka, Z.; Kisch, H. New J. Chem. 1997,

^{21 893-902}

⁽²⁶⁾ Gutiérrez, M. M.; Amorebieta, V. T.; Estiú, G. L.; Olabe, J. A. J. Am. Chem. Soc. 2002, 124, 10307–10319.

⁽²⁷⁾ van Voorst, J. D. W.; Hemmerich, P. J. Chem. Phys. 1966, 45, 3914-3918.

⁽²⁸⁾ Funai, I. A.; Blesa, M. A.; Olabe, J. A. Polyhedron 1989, 8, 419-426.

⁽³⁰⁾ Gear, C. W. Comun. ACM 1971, 14, 176.

Figure 2. Successive spectra obtained during the reaction of 1.5×10^{-4} M [Fe(CN)₅H₂O]³⁻ with 9×10^{-4} M NH₂OH ($R_0 = 6$), pH 7, I = 1.9 M (phosphates), 25.0 °C. Time elapsed between initial and final spectra: 5 min.

Table 1. Measured Values of N₂O and N₂ Concentrations Obtained in the Catalytic Decomposition Experiments, with Variation of pH and Concentration of Initial NH₂OH, at Constant Initial [Fe(CN)₅NH₃]³⁻: (2.0–2.5) × 10⁻³ M

pН	[NH ₂ OH] ₀ ^a	R_0^{b}	[N ₂ O] ^c	[N ₂] ^c	[N ₂]/[N ₂ O] ^c	%N yield ^d
7.0	1.25×10^{-2}	5	1.3×10^{-3}	2.3×10^{-3}	1.8	97
7.0	5.0×10^{-2}	20	4.6×10^{-3}	9.8×10^{-3}	2.1	96
7.0	7.5×10^{-2}	30	7.0×10^{-3}	1.5×10^{-2}	2.1	97
7.0	0.21	85	1.0×10^{-3}	7.2×10^{-2}	72.0	103
8.0	5.0×10^{-3}	2	8.3×10^{-4}	3.6×10^{-4}	0.4	88
8.0	1.25×10^{-2}	5	1.5×10^{-3}	2.3×10^{-3}	1.5	103
8.0	5.0×10^{-2}	20	5.6×10^{-3}	9.2×10^{-3}	1.6	100
8.0	7.5×10^{-2}	30	2.4×10^{-3}	2.0×10^{-2}	8.3	93
8.0	0.10	40	$8.0 imes 10^{-4}$	3.1×10^{-2}	38.8	96
9.3	1.25×10^{-2}	5	2.6×10^{-3}	7.0×10^{-4}	0.3	100
9.3	5.0×10^{-2}	20	6.2×10^{-3}	8.2×10^{-3}	1.3	99
9.3	7.5×10^{-2}	30	7.0×10^{-4}	2.3×10^{-2}	32.9	95

^{*a*} Molar concentration (*M*). ^{*b*} $R_0 = \{[NH_2OH]_0/[Fe(CN)_5NH_3^{3-}]_0\}$ ^{*c*} Molar concentration (*M*) expressed in the condensed phase. ^{*d*} Calculated using $\{[(4[N_2O] + 3[N_2])/[NH_2OH]_0]\} \times 100.$

when the reaction products are N_2 , N_2O , NH_3 , and NP and below 10% when N_2 and NH_3 are exclusively produced (see below for the two described regimes, fast and slow, respectively). The results indicate that the global operating processes for the gas evolution can be described by the following equations:

$$4NH_2OH \rightarrow N_2O + 2NH_3 + 3H_2O$$
$$3NH_2OH \rightarrow N_2 + NH_3 + 3H_2O$$

(iii) Spectroscopic and Kinetic Evidence for the Coordination of NH₂OH. Figure 2 shows the successive spectra of the solutions affording gas evolution and formation of NH₃, at pH 7. Although the initial 440-nm absorption of $[Fe(CN)_5H_2O]^{3-}$ shifts to lower wavelengths just after mixing, a new, more intense band develops, also at 440 nm, with increasing time. This behavior is also observed with ca. 10^{-3} M $[Fe(CN)_5H_2O]^{3-}$, maintaining $R_0 > 1$. The initial shift is indicative of NH₂OH coordination, as the time scale is consistent with the SF kinetic study of the primary interaction of $[Fe(CN)_5H_2O]^{3-}$ with excess NH₂OH, monitoring the decay of $[Fe(CN)_5H_2O]^{3-}$ at pH 7, for

Figure 3. Plot of k_{obs} (s⁻¹) vs [NH₂OH] in the reaction of 1.0×10^{-4} M [Fe(CN)₅H₂O]³⁻, with a controlled excess of NH₂OH, I = 1 M, NaCl; pH 7 (phosphates), 25 °C.

short times. These results lead to well-behaved pseudo-firstorder plots (Figure SI 1). Figure 3 displays a linear dependence of k_{obs} (s⁻¹) on [NH₂OH], from which a value of $k_f = 190 \text{ M}^{-1} \text{ s}^{-1}$ has been obtained. On the other hand, the intense 440-nm absorption observed for longer times in Figure 2 reflects the buildup of another intermediate, as shown below.

(iv) Evidence for Oxidation of Fe(II) to Fe(III) upon Coordination. The following results were obtained at comparable or slightly deficient concentrations of NH₂OH with respect to the iron complex, given that, in the presence of excess NH₂-OH, the subsequent reactivity described above hides all evidence of the Fe(III) chromophore. Figure 4 shows the successive UV– vis spectra obtained after mixing equimolar solutions of $[Fe(CN)_5H_2O]^{3-}$ and NH₂OH, at pH 7.

The decay at 444 nm is accompanied by the onset of a band centered at 395 nm, with a similar intensity, along with a pronounced bending of the baseline for wavelengths above 700 nm. This corresponds to the tail of a new emerging broad band in the NIR region centered at ca. 1400 nm, corresponding to

Figure 4. Successive UV-visible spectra obtained during the reaction of 8×10^{-5} M [Fe(CN)₅H₂O]³⁻ with 8×10^{-5} M NH₂OH, pH 7, I = 1.9 M (phosphates), T = 25 °C. Inset: same as before, pH 9.3. The shoulder at 440 nm in the initial spectrum corresponds to the reactant, and the maximum at 395 nm in the final spectrum, to the Fe(III) product. The main absorptions at ca. 400 nm in the first two spectra correspond to [Fe(CN)₅NH₃]³⁻, which is present in equilibrium at pH 9.3. Time elapsed between initial and final spectra at both pH's, ca. 1 h.

the mixed-valent [(NC)₅Fe^{III}NCFe^{II}(CN)₄H₂O]⁵⁻ ion.³¹ This absorption disappears with initial 10⁻⁵ M [Fe^{II}(CN)₅H₂O]³⁻, but the 395-nm absorption remains (bridge cleavage is achieved upon dilution, with persistence of the Fe(III)-chromophore in the mononuclear ion).¹⁸ The inset in Figure 4 shows similar, slower changes observed at pH 9.3. In complementary experiments at pH's 7 and 9.3, oxygen was allowed to mix with $[Fe^{II}(CN)_5H_2O]^{3-}$ under the same conditions as with NH₂OH; remarkably equal final spectra were obtained, as shown in Figure SI 2. The product of reaction with O₂ has been early identified as [Fe^{III}(CN)₅H₂O]^{2-.18} To confirm the oxidation state of the metal, we added hydrazine to the mixed [Fe(CN)₅H₂O]³⁻-NH₂-OH solution. Figure SI 3 shows a fast conversion of the 395nm band into a new one centered at 440 nm ($\epsilon > 4500 \text{ M}^{-1}$ cm^{-1}), which further evolves slowly to a red complex absorbing at 520 nm ($\epsilon > 5500 \text{ M}^{-1} \text{ cm}^{-1}$). Along with the above changes, the decay of the NIR absorption is observed at the earliest stages. The experiments with hydrazine are quite relevant to the present study. As discussed below, the spectral changes associated with the 440 \rightarrow 520-nm conversions also appear as main features of the NH₂OH-disproportionation reactions, although without the specific addition of hydrazine. Overall, the results show that the $[Fe(CN)_5H_2O]^{3-}$ -NH₂OH solutions display oxidizing activity, as expected for Fe(III) species reacting with hydrazine.²⁸ The similar, slower changes at pH 9.3 confirm that oxidation of the metal center occurs at all the studied pH's. The slow decay of the 395-nm absorptions with addition of a slight excess of NH₂OH suggests that a reductive fate of the Fe(III) species is operative.

The influence of the concentration of $[Fe(CN)_5H_2O]^{3-}$ on the spectroscopic observations was investigated in the range (2–

6) × 10⁻³ M, still maintaining $R_0 < 1$, pH 7. The spectra of the solutions appear quite different, yielding equilibrium mixtures of the [Fe(CN)₅H₂O]³⁻ ion and the cyano-bridged dimer {[Fe(CN)₅]₂H₂O}⁶⁻ ($\lambda_{max} = 385$ nm).³¹ However, the changes observed during the reaction with NH₂OH are similar to those at the lowest concentrations. We observe the increase of the product absorbance at ca. 385 nm and, again, a pronounced bending in the baseline for wavelengths above 700 nm. In other experiments with (2–6) × 10⁻³ M [Fe(CN)₅H₂O]³⁻, $R_0 < 1$ and pH 7, we observe the evolution of N₂ but not of N₂O. In the exhausted solutions ammonia and NP are also found. This shows that, even under addition of substoichiometric initial NH₂OH, not only coordination and reduction but also oxidation ensues.

(v) Evidence for the Formation of NH₂ Radicals. When the reaction of NH₂OH with [Fe(CN)₅NH₃]³⁻ is initiated in the presence of 0.1 M methyl methacrylate, we observed the development of a filamentous suspension, indicative of a radicalinduced polymerization.³² This was not observed in control experiments at pH 7-8 with aerated solutions of [Fe(CN)₅NH₃]³⁻ in the absence of NH2OH or with aerated solutions of NH2OH in the absence of $[Fe(CN)_5NH_3]^{3-}$ Assuming a reductive cleavage of the N-O bond in NH2OH, both amino (NH2) or hydroxyl (OH) radicals could be formed. Each of them shows a different reactivity toward benzene.33 NH2 does not react with benzene under our reaction conditions, but the OH radical should react in a fast way yielding phenol. When the reactions were performed adding 20 mM benzene, no production of phenol was observed. Finally, a control experiment was made by mixing equimolar solutions of [Fe(CN)₆]⁴⁻ with NH₂OH. No radicals were detected, and no spectral changes occurred, showing no reaction at all.

^{(31) (}a) Emschwiller, G. C. R. Acad. Sci. Paris 1967, 265, 281–284. (b) Emschwiller, G.; Jorgensen, C. K. Chem. Phys. Lett. 1970, 5, 561–563. (c) Souto, M. F.; Cukiernik, F. D.; Forlano, P.; Olabe, J. A. J. Coord. Chem. 2001, 54, 343–353.

 ^{(32) (}a) Kochi, J. K. Free Radicals; Wiley: 1973; Vol. II. (b) Corvaja, C.; Fischer, H.; Giacometti, G. Z. Physik. Chem. Neue Folge 1965, 45, 1–19.
 (33) Neta P. Maruthamuthu P. Carton P. M. Fessenden R. W. J. Phys. Chem.

 ⁽³³⁾ Neta, P.; Maruthamuthu, P.; Carton, P. M.; Fessenden, R. W. J. Phys. Chem. 1978, 82, 1875–1878.

Figure 5. Time evolution of the gaseous products observed for the reaction between 2.5×10^{-3} M [Fe(CN)₅H₂O]³⁻ and NH₂OH: 1.25×10^{-2} M, R_0 = 5, N₂O (\Box) N₂ (\bigcirc); 5.0 × 10⁻² M, R_0 = 20, N₂O (\triangle) N₂ (\bigtriangledown); 7.5 × 10^{-2} M, R_0 = 30, N₂O (+) N₂ (*); pH 7, *I* = 1.9 M (phosphates), *T* = 25 °C. Each curve reflects the accumulation of species in the reactor.

Figure 6. Time evolution of the gaseous products observed for the reaction between 2.5×10^{-3} M [Fe(CN)₅H₂O]³⁻ and NH₂OH: 1.25×10^{-2} M, $R_0 = 5$, N₂O (\bigcirc) N₂ (\square); 5.0×10^{-2} M, $R_0 = 20$, N₂O (\triangle) N₂ (\triangledown); 7.5×10^{-2} M, $R_0 = 30$, N₂ (+); pH 9.3, I = 0.2 M (borates), 25 °C. For $R_0 = 30$, N₂ and N₂O are detected at the beginning, up to the plateau region.

(vi) Influence of pH and Concentration of NH₂OH in the Distribution of Gaseous Products. Table 1 displays the measured concentrations of N₂O and N₂ obtained in experiments with different initial concentration ratios of NH₂OH/complex (R₀) at different pH's. For nearly fixed concentrations of Fe(II) complex, the time elapsed for the complete transformation of increasing amounts of NH₂OH (between 0.0125 and 0.2 M) is approximately constant, ca. 50 min.

Figure 5 shows the S-shaped concentration—time profiles for the production of $[N_2]$ and $[N_2O]$ at pH 7.0. Remarkably, the N_2/N_2O ratios are close to 2 in most of the experiments (also at pH 6, Figure SI 4), with the only exception at a very high value of R_0 , 85. At pH 8, Table 1 shows that more N_2O is produced for $R_0 = 2$, but the yield of N_2 increases gradually for greater R_0 's (range 5–30; cf. also Figure SI 5 for pH 8, with a similar shape of the curves compared to those in Figure 5). The time needed to finish the process is now ca. 40 min, which is slightly smaller than the above-reported value in Figure 5. Figure 6 shows the corresponding changes in $[N_2O]$ and $[N_2]$ with time at pH 9.3. It shows a similar timing for the induction process

Figure 7. Absorbance at 440 nm vs time measured for the reaction between 2.5×10^{-3} M [Fe(CN)₅H₂O]³⁻ and 1.25×10^{-2} M NH₂OH, $R_0 = 5$; (O) pH 7, (\Box) pH 8, (\triangle) pH 9.3. T = 25 °C.

and also a similar dependence of the production of N_2 and N_2O with R_0 as described for pH 8. The time elapsed for reaching the plateau region is again shorter than for pH' s 7 and 8, ca. 30 min. This behavior, comprising the onset of a fast regime, shows that the rate increases with pH, although we do not observe proportional changes with the concentration of H⁺.

At pH 9.3, we detect a new situation for $R_0 = 30$, not shown in the previous figures for lower pH's. At the early stages N₂, N₂O, and NH₃ were produced (rising part for the first 10 min), but when the transformed NH₂OH was around 10%, the reaction rate diminished noticeably. After this point, *only N₂ and NH₃* are produced, and this slow regime persists until completion. Turning back to Table 1, it can be seen that nearly exclusive yields of N₂ were also attained at $R_0 = 85$ and 40 for the lower pH' s 7 and 8, respectively (not shown in Figures 5 and SI 3). These values indicate that the change of regime occurs at any pH and is poorly sensitive to the concentration of NH₂OH. Further on, we will refer to the latter behavior as the *inhibited regime*.

In most of the above experiments, we observed that NP is also produced, with a pH-dependent final concentration. At pH 7, nearly 50% of the initial complex was transformed into NP. This fraction became smaller, down to 30% and 10% at pH's 8.0 and 9.3, respectively. However, NP was not found under the inhibited regime.

It is useful to compare the above results with the parallel changes in the intense 440-nm absorption band in experiments at ca. 10^{-3} M [Fe(CN)₅H₂O]³⁻. Figure 7 shows the absorbance curves against time for $R_0 = 5$, at different pH's.

The rates of development of the band and the maximum attained intensity increase with pH. In all cases, the decay is fast and complete in 30 min. Note that the experiment at pH 7 reveals only a modest absorption. Figure 7 clearly shows the intermediate character of the 440-nm absorbing species in the *fast regime*, which evolves along with the production of N₂, N₂O, NP, and NH₃. In addition, a correlation was observed between the absorbance at 440 nm and the increase in the production of N₂, when the concentration of NH₂OH was increased at constant pH and complex concentration. Figure 8 shows the time evolution of the absorbance traces at 440 and 520 nm, for $R_0 = 30$, pH 9.3.

Figure 8. Absorbance vs time measured for the reaction between 2.5×10^{-3} M [Fe(CN)₅H₂O]³⁻ and 7.5×10^{-2} M NH₂OH, ($R_0 = 30$); (\bigcirc) 440 nm and (\triangle) 520 nm; pH 9.3, I = 0.2 M (borates), T = 25 °C. (1) Fast absorbance increase for the first 10–15 min (corresponds to the initial fast production of N₂ and N₂O in Figure 6 for the same period). (2) Slowly decreasing plateau at 440 nm (corresponds to a constant rate of only N₂ production, up to 300–400 min; note the change in scale in Figure 6.) For t = 600 min the 520-nm band emerges and the rate of N₂ production increases (not seen in Figure 6). (4) Up to 1000 min, $A_{440} = A_{520}$, and the consumption of NH₂OH is ca. 50%. The rate of N₂ production still increases. (5) The production of NH₂OH.

Note that the conditions correspond to the *inhibited regime* (cf. Figure 6). The buildup of the 440-nm band, rapidly attaining high intensity, is followed by a very slow decay, compared with the one observed for $R_0 = 5$ in Figure 7 at the same pH.³⁴ It is instructive to compare the absorbance values in Figure 8 with the gas production measurements in Figure 6 (same conditions, $R_0 = 30$), along with the degree of consumption of NH₂OH. We describe in the legend of Figure 8 the different timedependent features of these indicators. Both species were very light-sensitive, although stable in the darkness. When the measurements were performed under illumination, the N2 production behavior was similar, but the 520-nm band intensity was smaller and decayed down to zero along with the stop in the production of N₂. Finally, the 440-520-nm conversions were also detectable under the *fast regime* conditions, where the 520nm absorptions behaved as transients, along with the 440-nm decays.

(vii) Characterization of Intermediates in the Solutions with an Intense 440 nm Absorption. (a) Resonance Raman. Figure 9 shows the spectrum in aqueous solution, after irradiation close to the maximum of the long-lived 440-nm band. The main absorption appears at 1482 cm⁻¹, together with several peaks in the range 2060–2100 cm⁻¹, which are typical of cyanide-stretching vibrations associated with Fe(II).¹³ Absorptions at 1639, 1556, 989, and 917 cm⁻¹ correspond to buffer components. The peak at 1482 cm⁻¹ can be assigned to the N=N stretching, by comparison with absorptions measured in other diazene complexes.^{35a} Stronger and conclusive evidence on diazene coordination is given by the downward shift of the latter absorption to 1438 cm⁻¹, when initial ¹⁵NH₂OH was used. This is in full agreement with a doubly labeled ¹⁵N-species.^{35a}

(b) UV-vis. The estimation of the molar absorbance, $\epsilon \ge 4500 \text{ M}^{-1} \text{ cm}^{-1}$ was done under conditions favoring the fast formation of the intermediate (cf. Figure 8). The absorption properties are consistent with similar features found in diazene complexes.^{35b}

(c) ¹⁵N NMR. Figure 10 shows the spectrum of a reaction mixture of excess ¹⁵NH₂OH with $[Fe(CN)_5NH_3]^{3-}$ at pH ≈ 9 containing the long-lived 440-nm absorption band. Five signals are observed at -76, -242, -281, -339 and -373 ppm, relative to CH₃NO₂ as external standard.³⁶ The most intense one at -281 ppm is presently assigned to free NH₂OH, while the other are in principle assigned to species arising as steadystate intermediates. The peaks at -372 and -339 ppm can be traced to NH₃ and N₂H₄, respectively (the latter one could also correspond to a structurally related intermediate), and the very weak one at -242 ppm could be due to bound NH₂OH.³⁷ Finally, the last signal at -76 ppm can be confidently assigned to the bound diazene intermediate.37 This last compound is expected to generate two different signals for each nitrogen atom, unless HN=NH is coordinated in an η^2 mode or there is a fluxional coordination exchange between both nitrogen atoms.

(d) Chemical Evidence. The 440 \rightarrow 520-nm conversion in Figure 8 is clearly indicative of a mononuclear \rightarrow dinuclear transformation involving bridged diazene. The same process has been found with hydrazine as a precursor, in oxidizing conditions (see also Experimental Section and Results, section iv).²⁸

(e) Competitive Experiments. For $R_0 > 40$, at 25.0 °C and pH 8–9.3, with the reactions operating under the *inhibited regime* (persistence of the 440-nm absorption), we observed that the reduction of ethylene to ethane competes with the disproportionation of NH₂OH to N₂ and NH₃. In this situation we did not observe the development of the band centered at 520 nm. These hydrogenation processes are typical of diazene reactivity.³⁸

Discussion

The reaction of NH₂OH with cyanoferrates appears quite complex. Large quantities of NH₂OH are consumed by starting with [Fe^{II}(CN)₅H₂O]³⁻ leading to reduction (NH₃) and oxidation (N₂, N₂O, NO⁺) products, with the participation of free radicals. The appearance of N₂H₂ as a bound intermediate is unprecedented in previous studies of NH₂OH redox chemistry. The time evolution and the dependence on pH, as well as on the NH₂OH concentration for the formation of products, place a high premium on understanding the mechanism of the disproportionation process. We anticipate a simplified Scheme 1, consistent with the known chemistry of the reactive species involved, followed by a more detailed description of the proposed paths.

We analyze first the conditions chosen to handle the solutions. For the $[Fe^{II}(CN)_5L]^{3-}$ complexes (L = H₂O, NH₃, NH₂OH,

(37) Mason, J. Chem. Rev. 1981, 81, 205-227.

⁽³⁴⁾ The high intensity and slow decay of the 440-nm band are observed at other R_0 values for different initial concentrations of [Fe(CN)₅H₂O]³⁻. Thus, at pH 7 and (1–2) × 10⁻⁵ M [Fe(CN)₅H₂O]³⁻, it was observed for R_0 ca. 5–6.

^{(35) (}a) Lehnert, N.; Wiesler, B. E.; Tuczek, F.; Hennige, A.; Sellmann, D. J. Am. Chem. Soc. 1997, 119, 8879–8888. (b) ibid. 1997, 119, 8869–8878.

⁽³⁶⁾ The proton-decoupled ¹⁵N NMR spectrum has an inherent low sensitivity, nearly an order of magnitude less than ¹³C signals. Unfavorable sensitivity conditions in our system are given by the dynamic evolution and bubble formation. Routine measurements with ¹⁵N NMR usually require concentrations in the range 100–1000 mM, which are nearly an order of magnitude greater than those used in the present study (cf. Silverstein, R. M.; Webster, F. X. Spectrometric Identification of Organic Compounds, 6th ed.; Wiley: 1997).

 ^{(38) (}a) Stanbury, D. M. Prog. Inorg. Chem. 1998, 47, 511-561. (b) Back, R. A. Rev. Chem. Intermed. 1984, 5, 293-323. (c) Hunig, S.; Muller, H. R.; Thier, W. Tetrahedron Lett. 1961, 11, 353-357.

Figure 9. Resonance Raman spectrum of the solution containing the 440-nm long-lived species. See Experimental Section for the measurement conditions. The peak at upper-right corresponds to the most intense absorption in a complementary experiment with initially labeled hydroxylamine (¹⁵N).

Figure 10. ¹⁵N NMR spectrum of the solution containing the long-lived 440-nm absorbing species. See Experimental Section for the measurement conditions.

N₂H₄, N₂H₂, etc.), full cyanide deprotonation is ensured at pH 6.0, the lowest used in the experiments.³⁹ The relevant pK_a 's for NH₃OH⁺ and NH₂OH are 5.9 and 13.7, respectively.⁸ These values could be decreased by ca. 2 pK_a units upon coordination.²⁹ We conclude that NH₂OH should be the predominant species in our reaction conditions. For the possible oxidized

intermediates $[Fe^{III}(CN)_5L]^{2-}$, deprotonation of L may occur significantly at pH's greater than 8.⁴⁰ Upon dissolution of solid Na₃[Fe^{II}(CN)₅NH₃]·3H₂O, reaction 1 is onset:

$$[Fe^{II}(CN)_5NH_3]^{3-} + H_2O \rightleftharpoons [Fe^{II}(CN)_5H_2O]^{3-} + NH_3$$
 (1)

The values of k_1 and k_{-1} are $1.75 \times 10^{-2} \text{ s}^{-1}$ and 365 M⁻¹ s⁻¹, respectively (25.0 °C, I = 0.1 M).⁴¹ The pH range 6–8 is

^{(39) (}a) Toma, H. E.; Malin, J. M. Inorg. Chem. 1973, 12, 1039–1045. (b) Malin, J. M.; Koch, R. C. Inorg. Chem. 1978, 17, 752–754.

Scheme 1

sufficiently low for trapping most of the produced NH₃ as NH₄⁺ $(pK_a 9.24)$,⁴² thus allowing for the regeneration of [Fe^{II}(CN)₅- H_2O ³⁻ in the reaction medium.

Spectral and kinetic evidence on the coordination of NH2-OH have been presented. The second-order rate constant in Figure 3 is consistent with similar values found for the coordination of neutral ligands into [Fe^{II}(CN)₅H₂O]³⁻, such as NH₃ (see eq 1), amines, N₂H₄, etc..^{13,41}

The initial wavelength shift in Figure 2 can be interpreted through reactions 2a and 2b, considering two alternative coordination modes of NH₂OH.^{8,13}

$$[Fe^{II}(CN)_{5}H_{2}O]^{3-} + NH_{2}OH \rightleftharpoons$$

$$[Fe^{II}(CN)_{5}O(H)NH_{2}]^{3-} + H_{2}O \quad (2a)$$

$$[Fe^{II}(CN)_{5}H_{2}O]^{3-} + NH_{2}OH \rightleftharpoons$$

$$[Fe^{II}(CN)_{5}NH_{2}OH]^{3-} + H_{2}O \quad (2b)$$

The evidence on the Fe(III) oxidized product and radical formation implies that a follow-up to coordination must occur. We propose reaction 3:

$$[Fe^{II}(CN)_5O(H)NH_2]^{3-} + H^+ \rightarrow [Fe^{III}(CN)_5H_2O]^{2-} + NH_2$$
(3)

The primary interaction described by eqs 2-3 agrees with the slower oxidation observed with increasing pH. This picture is in contrast with the lack of substitutional or redox reactivity of $[Fe^{II}(CN)_6]^{4-}$ toward NH₂OH. As the redox potentials of hexa- and pentacyano-complexes are similar (ca. 0.4 V),¹³ it becomes evident that iron-oxidation requires an inner-sphere path.

The Fe(III) ion generated in reaction 3 goes back to Fe(II) under reductive conditions, mainly provided by the excess NH2-OH.²⁰ On the other hand, the production and role of the oxidizing NH₂ radicals⁴³ in the reduction of NH₂OH by transition metal complexes has been previously documented.8 In the Results section, we emphasized on a reaction process that switched between a fast and a slow, inhibited regime. We interpret it as the reaction following at least two different pathways. One produces a certain intermediate, while another one consumes it. Then, the intermediate concentration functions as a trigger for the change of regime. For high concentrations the reaction attains the *fast regime*. Eventually the intermediate concentration may be decreased enough, shifting the reaction path to the slow, inhibited regime. As anticipated in Scheme 1, we consider the NH₂ radical as the active intermediate. Then, reaction 3 is the initiation of a chain reaction, with reactions 4 and 5 operating as propagation steps.

$$NH_2 + NH_2OH \rightarrow NH_3 + NHOH$$
 (4)

$$\mathrm{NHOH} + \mathrm{NH}_{2}\mathrm{OH} \rightarrow \mathrm{HNO} + \mathrm{H}_{2}\mathrm{O} + \mathrm{NH}_{2} \qquad (5)$$

Reactions 4 and 5 are thermodynamically allowed in our reaction conditions.^{43,44} The observed induction period (see Figures 5, 6, SI 4, and SI 5) is also indicative of this complex kinetics.⁴⁵ According to our simulations, the induction is controlled by the slow reactions 3 and 5. Thus, the basis is set for the fast catalytic consumption of NH₂OH through the formation of oxidized and reduced products. HNO (nitroxyl)⁴⁶ appears as a plausible intermediate in our reaction conditions,

^{(40) (}a) Davies, G.; Garafalo, A. R. Inorg. Chim. Acta 1976, 19, L3-L4. (b) Davies, G.; Garafalo, A. R. Inorg. Chem. 1976, 15, 1101-1106.

⁽⁴¹⁾ Toma, H. E.; Batista, A. A.; Gray, H. B. J. Am. Chem. Soc. 1982, 104, 7509-7515. The formation rate constants for the coordination of neutral ligands into [Fe(CN)₅H₂O]³⁻ decrease slightly with the ionic strength, with reported values of ca. 2×10^2 M⁻¹ s⁻¹ at I = 1 M.

⁽⁴²⁾ Fasman, G. D. Handbook of Biochemistry and Molecular Biology, Physical and Chemical Data; CRC Press: Cleveland, OH, 1976; Vol. 1.

⁽⁴³⁾ Stanbury, D. M. *Adv. Inorg. Chem.* **1989**, *33*, 69–138. (44) Free energies for reactions 4 and 5 were calculated as -106 kJ mol^{-1} and -0.8 kJ mol⁻¹, respectively. The chain propagation and its precursor, reaction 3, reveal a close analogy between hydroxylamine and hydrogen peroxide chemistry (Fenton-type), with Fe(II) species leading to free radicals (cf. Jones, C. W. Applications of Hydrogen Peroxide and Derivatives; The Royal Society of Chemistry: U.K., 1999; p 44).

⁽⁴⁵⁾ Benson, S. W. Foundations of Chemical Kinetics; McGraw-Hill Book Co.: New York, 1960.

a precursor of N₂O and N₂ according to the fast reactions 6 and $7:^8$

$$2\text{HNO} \rightarrow \text{N}_2\text{O} + \text{H}_2\text{O} \tag{6}$$

$$HNO + NH_2OH \rightarrow N_2 + 2H_2O \tag{7}$$

The set of reactions 4-7 sustain the NH₂OH processing and agree with the stoichiometry found in the *fast regime* conditions. The relative enrichment of N₂ with an increasing concentration of initial NH₂OH is consistent with reaction 7 being favored over reaction 6 (cf. Table 1). The production of N₂O could only be realized for R_0 's > 1. No production was observed upon treatment with substoichiometric NH2OH, given that NP and N₂ did form, and this can be traced to the rapid depletion of NH₂OH.

In parallel with the radical path, the formation and decay of the 440-nm band has been observed (Figures 2 and 7). We have already identified the species absorbing at this wavelength as $[Fe^{II}(CN)_5N_2H_2]^{3-}$, and we propose that it is formed through reaction 8:

$$[Fe^{II}(CN)_5NH_2OH]^{3-} + NH_2OH \rightarrow$$

 $[Fe^{II}(CN)_5N_2H_2]^{3-} + 2H_2O$ (8)

The 440-nm band was previously traced to the [Fe^{II}(CN)₅- NH_2OH ³⁻ complex.^{12,15,49} However, the d-d transitions in $[Fe^{II}(CN)_5L]^{3-}$ complexes with L = N-binding saturated ligands, NH₃, amines and diamines, N₂H₄, appear all around 400 nm, with $\epsilon = ca. 500 \text{ M}^{-1} \text{ cm}^{-1}.^{13}$ The intense 440-nm band can be more reasonably assigned to a metal-to-ligand charge-transfer (MLCT) transition from Fe(II) to the vacant π^* orbital in the [Fe^{II}(CN)₅N₂H₂]³⁻ ion.^{35b} There are several examples of well characterized monodentate coordination of N2H2 in low-spin d⁶ complexes.⁵⁰ The [Fe^{II}(CN)₅N₂H₂]³⁻ ion must be moderately inert toward dissociation of N₂H₂, according to its $\sigma - \pi$ bonding properties,35 but it should be destroyed by the oxidants existing in the reaction pool.

The termination reactions for the NH₂ radical can be envisaged through a secondary interaction with [Fe^{II}(CN)₅L]³⁻ reductants ($L = H_2O$, N_2H_2 , etc.) or through the less probable (in most of our experimental conditions) self-reaction giving hydrazine.47

Equation 8 describes a competitive reaction, regarding eq 3, for the decay of [Fe^{II}(CN)₅O(H)NH₂]^{3-,48} and it becomes predominant with increasing pH's and NH₂OH-concentration. The [Fe^{II}(CN)₅N₂H₂]³⁻ ion traps most of the iron sites, the NH₂ radical concentration has been sufficiently depleted through the termination steps, and the reaction develops very slowly (see Figure 6). In these conditions, bound diazene decays mainly through reaction 9.38,51

$$\begin{split} \left[\text{Fe}^{\text{II}}(\text{CN})_5 \text{N}_2 \text{H}_2 \right]^{3-} + \left[\text{Fe}^{\text{II}}(\text{CN})_5 \text{O}(\text{H}) \text{NH}_2 \right]^{3-} \rightarrow \\ 2 \left[\text{Fe}^{\text{II}}(\text{CN})_5 \text{H}_2 \text{O} \right]^{3-} + \text{N}_2 + \text{NH}_3 \ (9) \end{split}$$

Reactions 8 and 9 satisfy the equimolar stoichiometry found for the N₂ and NH₃ production in the *inhibited regime* and also sustain the slow molecular path for NH2OH processing anticipated in the scheme.

Figure 8 indicates that after the slowly decreasing plateau corresponding to the inhibited regime, the $[Fe^{II}(CN)_5N_2H_2]^{3-1}$ ion becomes the precursor of a species absorbing at 520 nm, which we already assigned to the bridged-diazene dimer. Its RR spectrum showed a band at 1440 cm⁻¹ after irradiation at 515 nm,²⁸ and this frequency is consistently lower than the one assigned above to $[Fe^{II}(CN)_5N_2H_2]^{3-}$. Therefore, we propose reaction 10, consistent with a specific test described in the Experimental Section:

$$[Fe^{II}(CN)_{5}N_{2}H_{2}]^{3-} + [Fe^{II}(CN)_{5}H_{2}O]^{3-} \rightleftharpoons$$
$$[(NC)_{5}Fe^{II}HN=NHFe^{II}(CN)_{5}]^{6-} + H_{2}O (10)$$

The dimer is quite stable although light sensitive and decomposes giving N2 if oxygen or other oxidants are present. The appearance of the dimer goes in parallel with a faster evolution of N₂ (see legend in Figure 8). This can be explained because more $[Fe^{II}(CN)_5H_2O]^{3-}$ and oxidant are available as far as NH₂OH is being consumed. The [Fe^{II}(CN)₅H₂O]³⁻ ion binds competitively to the [Fe^{II}(CN)₅N₂H₂]³⁻ complex and simultaneously promotes more NH₂OH decomposition (through reaction 2a) and subsequent N_2 production.

To explain fully the diversified product pattern, we come again to the radical path. As well as leading to N2 and N2O production, HNO can be oxidized to NO⁺. The identification of NP as an oxidation product at an early stage of the process provides complementary evidence of the formation of HNO⁴⁶ in the propagation chain. The possibility of obtaining NP from NH₂OH has been anticipated.⁵² Successive two-electron processes have been proposed for the oxidation by high-valent aqueous metal ions 8,53 and in the enzymatic HAO-mediated conversions of NH₂OH to nitrite.⁴ Good stoichiometric evidence has been found for the participation of [Fe^{II}(CN)₅HNO]³⁻ in the full six-electron reduction of NP to NH₃.²⁶ Theoretical calculations have been reported providing evidence on the stability, geometry, and spectroscopy of [Fe^{II}(CN)₅-HNO]^{3-.54}

^{(46) (}a) Bonner, F. T.; Dzelzkalns, L. S.; Bonucci, J. A. Inorg. Chem. 1978, (a) Bonnet, F. T., Dielizanis, L. S., Bonner, F. T.; Borer, A.; Cooke, I.;
 Hughes, M. N. Inorg. Chem. 1987, 26, 4379–4382. (c) Southern, J. S.;
 Hillhouse, G. L. J. Am. Chem. Soc. 1997, 119, 12406–12407. (d)
 Bartberger, M. D.; Fukuto, J. M.; Houk, K. N. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 2194-2198. (e) Shafirovich, V.; Lymar, S. V. Proc. Natl. Acad. 2001, 20, 2194-2196. (c) Shafirovich, V.; Lymar, S. V. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 7340-7345. (f) Sulc, F.; Immoos, C. E.; Pervitsky, D.; Farmer, P. J. J. Am. Chem. Soc. 2004, 126, 1096-1101.
 (47) Laszlo, B.; Alfassi, Z. B.; Neta, P.; Huie, R. E. J. Phys. Chem. A 1998, 102, 8498-8504.

⁽⁴⁸⁾ Equation 8 comprises a condensation process for NH₂OH, with possible unknown intermediate formation. In eq 8, the competition with reaction 3 could be better appreciated if the O-bound complex would be the reactant. However, the N-bound complex was considered a more realistic approach to diazene formation, given that the competition with reaction 3 is still established through reactions 2a and b. (49) Mulvey, D.; Waters, W. A. J. Chem. Soc., Dalton Trans. **1975**, 951–959.

⁽a) Smith, M. R., III; Cheng, T. Y.; Hillhouse, G. L. J. Am. Chem. Soc.

 ⁽a) simul, M. K., III, Cheng, I. 1.; Filinouse, G. L. J. Am. Chem. Soc.
 1993, 115, 8638-8642. (b) Cheng, T. Y.; Ponce, A.; Rheingold, A. L.;
 Hillhouse, G. L. Angew. Chem., Int. Ed. Engl. 1994, 33, 657-659. (c)
 Marchenko, A. V.; Vedernikow, A. N.; Dye, D. F.; Pink, M.; Zaleski, J.
 M.; Caulton, K. G. Inorg. Chem. 2004, 43, 351-360.

⁽⁵¹⁾ Equation 9 has been written after calculating that the one-electron outer Equation 9 has been wither after target and that but the one-electron of $[Fe^{III}(CN)_5N_2H_2]^{3-}$ by free NH₂OH is endergonic. The one-electron reduction potential for the couple NH₂OH/NH₂, OH⁻ is -0.6 V, estimated considering the following $\Delta G^0_{\rm f}$ values: -23.4, 192, and -157.8 kJ mol⁻¹ for NH₂OH, NH₂ radical, and OH⁻ ion in aqueous solution, respectively. The potential for the $[Fe^{III,II}(CN)_5N_2H_2]^{2-,3-}$ couple should be of ca. 0.5 V.13

⁽⁵²⁾ Caulton, K. G. Coord. Chem. Rev. 1975, 14, 317-355.

⁽⁵³⁾ Johnson, M. D.; Hornstein, B. J. *Inorg. Chem.* 2003, *42*, 6923–6928.
(54) González Lebrero, M. C.; Scherlis, D. A.; Estiú, G. L.; Olabe, J. A.; Estrin, D. A. *Inorg. Chem.* 2001, *40*, 4127–4133.

The decreasing yield of NP in the exhausted solutions for increasing pH's can be traced to the incidence of the wellestablished reaction of NP with NH₂OH.¹⁶

$$[Fe^{II}(CN)_5NO]^{2-} + NH_2OH + OH^- \rightarrow$$

 $[Fe^{II}(CN)_5H_2O]^{3-} + N_2O + H_2O$ (11)

Our previous analysis has been done considering mononuclear complexes, although equilibrium mixtures of $[Fe^{II}(CN)_5H_2O]^{3-}$ and $[(NC)_5Fe^{II}NCFe^{II}(CN)_4H_2O]^{6-}$ exist in the solutions under some of our experimental conditions.^{31,55} The first ion predominates at ca. $(1-3) \times 10^{-5}$ M, with increasing amounts of the dimer for greater concentrations. In oxidative conditions and a low concentration of NH₂OH, mixed-valent dinuclear complexes are produced.³¹ In excess of NH₂OH however the mixed valent complexes were not observed at all, suggesting a bridge cleavage and the predominance of mononuclear species. In either case, the coordination of substrates and subsequent reactions involving the labile iron-aqua site in the mixed-valent dimers should be similar to those proposed for the mononuclear ions.

Finally, we refer to the simulation results and interpretation. A simplified mechanism has been employed, emphasizing in the main oxidation and reduction products, with omission of the NP and bridged-diazene formation reactions. All the possible reactions presented explicitly or implicitly in the Discussion have been considered, as shown in Scheme SI 6, with the values of the rate constants extracted from the literature, as well as the ones which were considered as fitting parameters. We choosed pH 7 for the calculations, having in mind that the observed behavior was similar at the different pH's. Through this procedure, the importance and the relative sensibility of the reactions were studied, allowing for the establishment of a minimum scheme. The main focusing requirements deal with the induction periods, the distribution of products (N_2 , N_2O , and NH₃) and the conditions for the change of regime. The output in Figures SI 7 and 8 reproduces qualitatively the most important focused points, namely the following: (a) At a constant iron concentration, different initial concentrations of NH₂OH (ca. 0.025 M to 0.2 M) are processed in approximately the same time period. (b) The distribution of gaseous products shows enrichment in N₂ with increasing concentration of initial NH₂OH, up to a critical value after which the production is much slower. (c) The global yield of NH₃ is well reproduced.⁵⁶

Conclusions

 NH_2OH transforms to NH_3 and diverse oxidation products (N₂, N₂O, NO⁺) in different yields according to pH and concentration of initial substrate. With [Fe^{II}(CN)₅NH₃]³⁻ as the

initial precursor, great amounts of NH₂OH can be processed, with $[Fe^{II}(CN)_5H_2O]^{3-}$ as the cycling catalyst. Catalysis is inhibited by strongly binding ligands such as cyanide.

Coordination of NH₂OH to $[Fe^{II}(CN)_5H_2O]^{3-}$ and production of NH₂ sets the basis for establishing a fast *radical path* leading to reduced and oxidized products, NH₃ and nitroxyl, HNO, respectively. The latter species is the precursor for the formation of N₂ and N₂O and can be further oxidized to NP. A slow *molecular path*, accomplished simultaneously with the abovedescribed one, is operative for high concentrations of NH₂OH. The NH₂ radical concentration becomes low and the $[Fe^{II}-(CN)_5N_2H_2]^{3-}$ ion accumulates in the medium, trapping most of the iron sites. Thus, it can be characterized by chemical and spectroscopic tools (RR, UV–vis, ¹⁵NMR). In certain conditions, the $[(NC)_5Fe^{II}HN=NHFe^{II}(CN)_5]^{6-}$ ion remains in the exhausted solutions after consumption of NH₂OH. The intermediacy of well characterized diazene complexes is a novel result in the redox chemistry of NH₂OH.

The production of minor quantities of NP compared to the other products leads to some resemblance with the behavior of the HAO enzyme. The formation of NP in our reaction conditions, although mechanistically quite significant, is not catalytic however for the production of nitrite. Moreover, given the strong Fe–NO⁺ bond in NP, the catalytic iron site becomes partially blocked, because the NO⁺/NO₂⁻ conversion and release of nitrite occur at pH's > 10. This is in contrast with HAO, which presumably releases nitrite at lower pH's, thus allowing for further coordination and processing of NH₂OH.

Acknowledgment. This work was supported by the Universities of Buenos Aires and Mar del Plata, the Government Agencies ANPCYT and CONICET, and by the Volkswagen-Stiftung (Germany). We appreciate the aid of Professor Daniel Murgida (University of Berlin) in performing the RR measurements and the collaboration of Dr. Alejandro R. Parise with some experiments. V.T.A., F.D., and J.A.O. are members of the scientific staff of CONICET.

Supporting Information Available: Figures: SI 1 (Logarithmic plots for the reaction of $[Fe^{II}(CN)_5H_2O]^{3-}$ with excess NH₂OH). SI 2 (Reaction of O₂ with $[Fe^{II}(CN)_5H_2O]^{3-}$, in similar conditions as with NH₂OH). SI 3 (Reaction of hydrazine with the reaction product of $[Fe^{II}(CN)_5H_2O]^{3-}$ and NH₂OH). SI 4 (Time evolution of gaseous products at pH 6). SI 5 (Time evolution of gaseous products at pH 8). Scheme SI 6 (List of reactions and associated rate constants employed in the simulations). Figures: SI 7 (Simulation of time evolution of the concentration of N₂ and N₂O at different values of R_0). SI 8 (Simulation of time evolution of the concentration of [Fe^{II}(CN)₅N₂H₂]³⁻ at different values of R_0). This material is available free of charge via the Internet at http://pubs.acs.org.

JA046724I

⁽⁵⁵⁾ James, A. D.; Murray, R. S. J. Chem. Soc., Dalton Trans. 1977, 326–329.
(56) Ongoing experiments aim to better explore the transition region through a broader variation of pH's and concentrations of hydroxylamine. These results will be reported in due course.